Longitudinal Legendre polynomial expansion of electromagnetic fields for analysis of arbitrary-shaped gratings.
نویسندگان
چکیده
The Legendre polynomial expansion method (LPEM), which has been successfully applied to homogenous and longitudinally inhomogeneous gratings [J. Opt. Soc. Am. B24, 2676 (2007)], is now generalized for the efficient analysis of arbitrary-shaped surface relief gratings. The modulated region is cut into a few sufficiently thin arbitrary-shaped subgratings of equal spatial period, where electromagnetic field dependence is now smooth enough to be approximated by keeping fewer Legendre basis functions. The R-matrix propagation algorithm is then employed to match the Legendre polynomial expansions of the transverse electric and magnetic fields across the upper and lower interfaces of every slice. The proposed strategy then enhances the overall computational efficiency, reduces the required memory size, and permits the efficient study of arbitrary-shaped gratings. Here the rigorous approach is followed, and analytical formulas of the involved matrices are given.
منابع مشابه
Casimir effects of nano objects in fluctuating scalar and electromagnetic fields: Thermodynamic investigating
Casimir entropy is an important aspect of casimir effect and at the nanoscale is visible. In this paper, we employ the path integral method to obtain a general relation for casimir entropy and internal energy of arbitrary shaped objects in the presence of two, three and four dimension scalar fields and the electromagnetic field. For this purpose, using Lagrangian and based on a perturb...
متن کاملLegendre polynomial expansion for analysis of linear one-dimensional inhomogeneous optical structures and photonic crystals
A Legendre polynomial expansion of electromagnetic fields for analysis of layers with an inhomogeneous refractive index profile is reported. The solution of Maxwell’s equations subject to boundary conditions is sought in a complete space spanned by Legendre polynomials. Also, the permittivity profile is interpolated by polynomials. Different cases including computation of reflection–transmissio...
متن کاملA polynomial approximation for arbitrary functions
Abstract We describe an expansion of Legendre polynomials, analogous to the Taylor expansion, to approximate arbitrary functions. We show that the polynomial coefficients in Legendre expansion, thus, the whole series, converge to zero much more rapidly compared to the Taylor expansion of the same order. Furthermore, using numerical analysis with sixth-order polynomial expansion, we demonstrate ...
متن کاملEvaluation of the Validity of a Nonlinear J-Shaped Dose-Response Relationship in Cancers Induced by Exposure to Radiofrequency Electromagnetic Fields
The radiofrequency electromagnetic fields (RF-EMFs) produced by widely used mobile phones are classified as possibly carcinogenic to humans by International Agency for Research on Cancer (IARC). Current data on the relationship between exposure to RF-EMFs generated by commercial mobile phones and brain cancer are controversial. Our studies show that this controversy may be caused by several par...
متن کاملExploring the Use of Random Regression Models withLegendre Polynomials to Analyze Clutch Sizein Iranian Native Fowl
Random regression models (RRM) have become common for the analysis of longitudinal data or repeated records on individual over time. The goal of this paper was to explore the use of random regression models with orthogonal / Legendre polynomials (RRL) to analyze new repeated measures called clutch size (CS) as a meristic trait for Iranian native fowl. Legendre polynomial functions of increasing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 25 7 شماره
صفحات -
تاریخ انتشار 2008